On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation

نویسندگان

  • Dong Li
  • Xiaoyi Zhang
  • Charles Fefferman
چکیده

Consider the focusing mass-critical nonlinear Hartree equation iut + u=−(| · |−2 ∗ |u|2)u for spherically symmetric H 1 x initial data with ground state mass M(Q) in dimension d 5. We show that any global solution u which does not scatter must be the solitary wave eitQ up to phase rotation and scaling. © 2008 Elsevier Inc. All rights reserved. MSC: 35Q55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stability of Pseudo-conformal Blowup for L-critical Hartree Nls

We consider L-critical focusing nonlinear Schrödinger equations with Hartree type nonlinearity i∂tu = −∆u− ` Φ ∗ |u| ́ u in R, where Φ(x) is a perturbation of the convolution kernel |x|. Despite the lack of pseudo-conformal invariance for this equation, we prove the existence of critical mass finite-time blowup solutions u(t, x) that exhibit the pseudoconformal blowup rate L2x ∼ 1 |t| as t ր 0. ...

متن کامل

Nondispersive Solutions to the L-critical Half-wave Equation

We consider the focusing L2-critical half-wave equation in one space dimension i∂tu = Du− |u|u, where D denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M∗ > 0 such that all H1/2 solutions with ‖u‖L2 < M∗ extend globally in time, while solutions with ‖u‖L2 > M∗ may develop singularities in finite time. In this paper, we first prove the ex...

متن کامل

Characterization of Minimal-Mass Blowup Solutions to the Focusing Mass-Critical NLS

Let d ≥ 4 and let u be a global solution to the focusing masscritical nonlinear Schrödinger equation iut + ∆u = −|u| 4 d u with spherically symmetric H x initial data and mass equal to that of the ground state Q. We prove that if u does not scatter then, up to phase rotation and scaling, u is the solitary wave eQ. Combining this result with that of Merle [15], we obtain that in dimensions d ≥ 4...

متن کامل

On the Blowup for the L-critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class

We consider the focusing mass-critical nonlinear Schrödinger equation and prove that blowup solutions to this equation with initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the ground state at the blowup time. This extends recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [13], T. Hmidi and S. Keraani, [21], and N. Tzirakis, [36], on the blowup of t...

متن کامل

Threshold Solutions in the Case of Mass-shift for the Critical Kline-gordon Equation

We study global dynamics for the focusing nonlinear Klein-Gordon equation with the energy-critical nonlinearity in two or higher dimensions when the energy equals the threshold given by the ground state of a mass-shifted equation, and prove that the solutions are divided into scattering and blowup. In short, the Kenig-Merle scattering/blowup dichotomy [10, 11] extends to the threshold energy in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009